电子器件由于受到热应力积累效应、其他化学反应等影响易导致器件失效,其中造成电子器件失效的主要原因是温度过高。通过对电力电子器件的科学管理,在故障发生前管理防范对任务有影响的模式,从而有效提升电力电子器件的热可靠性能。
1.1热故障机理与现状。要科学合理得进行热故障管理,需要分析热功能原理,并在分析过程中找出产生热失效的原因和导致的严重后果。电力电子器件无论是静态休息还是动态运行中都存在能量损耗情况,导致该零件的热量与其他部位的芯片零件产生一定的温度差,从而使温度差转化成热量。这种热量通常以辐射或者传导的方式进行传递。因为许多热故障都是隐形故障,所以在失效调查时很难发现,产生此种现象的主要原因是间歇性失效。由于不能查找出具体原因,所以出现故障时不能及时进行维修,即便重新安装也会导致系统无法正常运转,从而可能引发一系列问题,并因找不出故障的具体原因而付出高昂的反复维修费用[1]。1.2热失效与温度的关系。运行过程中,器件温度过高与失效率呈指数形式不断增长,而这种增长形式只是一种较为相近的关系。除了器件高温之外,还有其他模式造成器件不能使用。许多热值失效对设置中的一些物理化学成分造成一系列结构变化,且这种变化由于温度的上升而不断加剧,使其在高温下失效。反言之,当器件温度同室内温度环境相似时,工作温度失效率也随之降低。这是因为器件在工作运转过程中与室内的温度产生加大的温度差时,会对化学变化速度减少不利影响,使其失效速度随之快速下降。因为器件材料不同,器件收缩程度不同,从而对器件的热度有所增加。同时,这会令器件中凝结的水发生腐蚀或者短路现象,所以在很低的温度下器件的失效率同样会增加。综合所述,工作环境是电力电子器件热管理的主要成因[2]。1.3热管理常用措施。在保持电力电子器件原始设计的同时,要预防器件发生任何故障,需要利用电子设备进行热设计管理。通过漏热热阻、传导电阻以及辐射散热等相关路径防止热致失效,提升器件的可靠性,降低经济损失。另外,设计过程中,应注意定型后改进热设计的成本要比事先热设计的成本高。为此,要想有效改进热设计,应该减少多个影响电力电子致热的因素。
体内玷污、封装问题以及机械问题等,都是造成可控硅失效的主要原因。优化的失效管理模式,不但在生产过程中对参数和设计机理有着很好的预防效果,还会在器件失效的过程进行准确判断。通过观察热点发生情况,同分析器件的失效原因进行对比得出结论,从而为电力电子器件的热失效诊断提供良好的科学数据[3]。2.1电流上升过快造成失效。通电后,电流上升速度过快会使器件存在一定的危险,这种危险产生的热点多是由低阻值、电容放电、电路不良等诸多因素触发的。所以,出现烧坏点是经常发生的事情。依据观察可以发现,当前如果因触发相关因素产生任何不适,会出现如同针眼般细小的烧坏点。但是,出现高控制触发会把电力电子器件烧成弧形,甚至会把电力电子器件熔烧透。遇到这种问题时,技术人员应该根据具体情况选择合适的控制触发器。其中,中心触发控制极可以提升电流上升率。因为这种中心触发器可以增加环形面积。同中心触发器件相比,边缘触发器件需要根据硅片直径进行[4]。2.2过电压与瞬间过压造成失效。过电压能够对可控硅造成多种损坏,也就是说在电压失效时,通常是因为器件热点过热才会烧坏针眼大小的范围,当电力电子器件体内漏电过多时也会增大烧坏面积。这需要采用优良合理的科学设计,寻找合适的参数与电路与之相匹配,防止抑制系统出现问题。假如阳极与阴极之间的两端产生很陡的电压,那么在电容器会有电流经过。该电流与控制极电流的作用相似,这时电力电气器件不再受任何控制,很大程度上造成严重烧毁,所以需采用科学合理的对应措施,以抑制器件两端存在的电压。2.3热设计不合理造成失效。半导体使用过程中,不能超过半导体预设的温度定额。如果器件温度过高,会造成器件损坏。当半导体功率到达预定电压时,会造成漏电现象,使其电力电气器件发热,从而产生严重的漏电现象,增加器件的消耗令器件温度过高,长此以往造成电力电子器件损坏。在半导体接近设置温度时,技术人员必须确保电力电子器件产生的功率值小于等于功率消散数值。当电力电子器件大于功率消散值时,会出现热电击穿现象。这是因为漏电会产生一定的热度,为此当电力电子器件温度过高时,会令功率无法消散。为了有效防止产生过高的温度,技术人员要采用科学合理的应对方法,选择适合的参数值进行散热,使其拥有良好的散热渠道[5]。2.4模块浪涌电流冲击导致失效。在额定结温正常工作运行状态下,电力电子器件能够承受较大的浪涌电流冲击,且不会造成损坏。在浪涌电流出现时,结温值会在极短的时间内上升或超过设定的温度。电力电子器件的热值稳定,导致产生的热量不会轻易散去。当器件重复失效时,器件将无法在自身冷却后到达额定温度范围。如果浪涌电流超过预期数值,会造成没有散热的区域受到影响。
3.1设计评审提升电力电子器件热管理效率。技术人员要建立评审团队,且该评审团队中必须有电子系统设计师。此外,团队中还要有其他技术领域设计师加入,对供应商以及忠实顾客等设计的指标进行鼓励确认。在设计评审过程中,评审人员必须对其产品的使用、维修等诸多环节进行详细评估,并在评估时充分考虑产品的使用性能和安全因素,同时要考虑热承受最大值和变化率因素。另外,环境中气温变化、空气中携带的腐蚀性以及相对潮湿的环境,也需要在评审时考虑。3.2加大电力电子器件热管理的设计评审。硬件在接受环境试验时,只要超出预定的载荷数值就会导致失效。在全面分析可靠性能时,技术人员要准确掌握载荷出现的概率值。即便这种特殊极端的概率事件不现实,只要从失效记录中找取相关数值,依然能摸索出数据值。3.3电力电子器件热管理需要加强设计评审。设计评审过程中,技术设计师需要提供正式报告以及相关数据设计说明,并对该设计进行简短产品介绍,介绍完毕后对其质疑性问题进行详细解答。当设计评审通过团队的方式进行评审时,需要对评审结果进行研究讨论,才能确保设计评审时公开公平公正。另外,在正式评审前,技术人员要提前准备好热设计的详细资料,避免在设计评审过程中发生临时修改的事件,还要确保设计资料提供的是最新可靠数据值,尽量避免出现模棱两可的问题[6]。
以热失效的角度对电力电子器件中常见的热失效原因进行分析,在分析探索中寻找科学合理的解决方法。笔者认为,技术人员应从其设计质量以及诸多管理方面实施把控,从而有效解决热失效存在的问题。此外,要在数据实验中寻找热失效的最终核心依据,通过数据实验探究寻找,使其能够科学合理地优化电力电子器件中的热设计,从而使电力电子器件中的热失效能够达到良好的防范效果。
[1]刘卫明,刘梦恒.电力电子器件的热失效及其管理研究[J].电子技术,2018,47(12):30-33.
[2]詹娟娟.电力电子器件及其应用的现状和发展[J].电脑迷,2018,(11):278.
[3]邢烜玮.电力电子器件常用散热方式及实效[J].电子技术与软件工程,2018,(19):237.
[4]王兰心.微电子封装器件热失效分析与优化研究[J].电子制作,2018,(17):99-100,98.
[5]郭怀新,孔月婵,韩平,等.GaN功率器件芯片级热管理技术研究进展[J].固体电子学研究与进展,2018,38(5):316-323.
论文摘要:介绍了电力电子器件和变频技术的发展过程,以及变频技术在家用电器的应用,分析了变频技术的应用也带来了谐波、电磁干扰和电源系统功率因数下降等问题。提出了相关的谐波抑制方法及提高电源系统功率因数的措施。
随着电力电子、计算机技术的迅速发展,交流调速取代直流调速已成为发展趋势。变频调速以其优异的调速和启、制动性能被国内外公认为是最有发展前途的调速方式。变频技术是交流调速的核心技术,电力电子和计算机技术又是变频技术的核心,而电力电子器件是电力电子技术的基础。电力电子技术是近几年迅速发展的一种高新技术,广泛应用于机电一体化、电机传动、航空航天等领域,现已成为各国竞相发展的一种高新技术。专家预言,在21世纪高度发展的自动控制领域内,计算机技术与电力电子技术是两项最重要的技术。
上世纪50年代末晶闸管在美国问世,标志着电力电子技术就此诞生。第一代电力电子器件主要是可控硅整流器(SCR),我国70年代将其列为节能技术在全国推广。然而,SCR毕竟是一种只能控制其导通而不能控制关断的半控型开关器件,在交流传动和变频电源的应用中受到限制。70年代以后陆续发明的功率晶体管(GTR)、门极可关断晶闸管(GTO)、功率MOS场效应管(PowerMOSFET)、绝缘栅晶体管(IGBT)、静电感应晶体管(SIT)和静电感应晶闸管(SITH)等,它们的共同特点是既控制其导通,又能控制其关断,是全控型开关器件,由于不需要换流电路,故体积、重量较之SCR有大幅度下降。当前,IGBT以其优异的特性已成为主流器件,容量大的GTO也有一定地位[1][2][3]。
许多国家都在努力开发大容量器件,国外已生产6000V的IGBT。IEGT(injectionenhancedgatethyristor)是一种将IGBT和GTO的优点结合起来的新型器件,已有1000A/4500V的样品问世。IGCT(integratedgateeommutatedthyristor)在GTO基础上采用缓冲层和透明发射极,它开通时相当于晶闸管,关断时相当于晶体管,从而有效地协调了通态电压和阻断电压的矛盾,工作频率可达几千赫兹[2][3]。瑞士ABB公司已经推出的IGCT可达4500一6000V,3000一3500A。MCT因进展不大而引退而IGCT的发展使其在电力电子器件的新格局中占有重要的地位。与发达国家相比,我国在器件制造方面比在应用方面有更大的差距。高功率沟栅结构IGBT模块、IEGT、MOS门控晶闸管、高压砷化稼高频整流二极管、碳化硅(SIC)等新型功率器件在国外有了最新发展。可以相信,采用GaAs、SiC等新型半导体材料制成功率器件,实现人们对“理想器件”的追求,将是21世纪电力电子器件发展的主要趋势。
高可靠性的电力电子积木(PEBB)和集成电力电子模块(IPEM)是近期美国电力电子技术发展新热点。GTO和IGCT,IGCT和高压IGBT等电力电子新器件之间的激烈竞争,必将为21世纪世界电力电子新技术和变频技术的发展带来更多的机遇和挑战。
变频技术是应交流电机无级调速的需要而诞生的。电力电子器件的更新促使电力变换
技术的不断发展。起初,变频技术只局限于变频不能变压。20世纪70年代开始,脉宽调制变压变频(PWM-VVVF)调速研究引起了人们的高度重视。20世纪80年代,作为变频技术核心的PWM模式优化问题吸引着人们的浓厚兴趣,并得出诸多优化模式,如:调制波纵向分割法、同相位载波PWM技术、移相载波PWM技术、载波调制波同时移相PWM技术等。
VVVF变频器的控制相对简单,机械特性硬度也较好,能够满足一般传动的平滑调速要求,已在产业的各个领域得到广泛应用。但是,这种控制方式在低频时,由于输出电压较小,受定子电阻压降的影响比较显著,故造成输出最大转矩减小。
矢量控制变频调速的做法是:将异步电动机在三相坐标系下的定子交流电流Ia、Ib、Ic通过三相——二相变换,等效成同步旋转坐标系下的直流电流Iml、Itl,然后模仿直流电动机的控制方法,求得直流电动机的控制量,经过相应的坐标反变换,实现对异步电动机的控制。
直接转矩控制直接在定子坐标系下分析交流电动机的数学模型,控制电动机的磁链和转矩。它不需要将交流电动机化成等效直流电动机,因而省去了矢量旋转变换中的许多复杂计算;它不需要模仿直流电动机的控制,也不需要为解耦而简化交流电动机的数学模型。
VVVF变频、矢量控制变频、直接转矩控制变频都是交—直—交变频中的一种。其共同缺点是输入功率因数低,谐波电流大,直流回路需要大的储能电容,再生能量又不能反馈回电网,即不能进行四象限运行。为此,矩阵式交—交变频应运而生。
20世纪70年代,家用电器开始逐步变频化,出现了电磁烹任器、变频照明器具、变频空调、变频微波炉、变频电冰箱、IH(感应加热)饭堡、变频洗衣机等[4]。
首先是电冰箱,由于它处于全天工作,采用变频制冷后,压缩机始终处在低速运行状态,可以彻底消除因压缩机起动引的噪声,节能效果更加明显。其次,空调器使用变频后,扩大了压缩机的工作范围,不需要压缩机在断续状态下运行就可实现冷、暖控制,达到降低电力消耗,消除由于温度变动而引起的不适感。近年来,新式的变频冷藏库不但耗电量减少、实现静音化,而且利用高速运行能实现快速冷冻。
在洗衣机方面,过去使用变频实现可变速控制,提高洗净性能,新流行的洗衣机除了节能和静音化外,还在确保衣物柔和洗涤等方面推出新的控制内容;电磁烹任器利用高频感应加热使锅子直接发热,没有燃气和电加热的炽热部分,因此不但安全,还大幅度提高加热效率,其工作频率高于听觉之上,从而消除了饭锅振动引起的噪声。
电力电子装置中的相控整流和不可控二极管整流使输入电流波形发生严重畸变,不但大大降低了系统的功率因数,还引起了严重的谐波污染。
另外,硬件电路中电压和电流的急剧变化,使得电力电子器件承受很大的电应力,并给周围的电气设备及电波造成严重的电磁干扰(EM1),而且情况日趋严重。许多国家都已制定了限制谐波的国家标准,国际电气电子工程师协会(IEEE)、国际电工委员会(IEC)和国际大电网会议(CIGRE)纷纷推出了自己的谐波标准。我国政府也制定了限制谐波的有关规定[5]。
为了抑制电力电子装置产生的谐波,一种方法是进行谐波补偿,即设置谐波补偿装置,使输入电流成为正弦波[3]。
传统的谐波补偿装置是采用IC调谐滤波器,它既可补偿谐波,又可补偿无功功率。其缺点是,补偿特性受电网阻抗和运行状态影响,易和系统发生并联谐振,导致谐波放大,使LC滤波器过载甚至烧毁。此外,它只能补偿固定频率的谐波,效果也不够理想。
电力电子器件普及应用之后,运用有源电力滤波器进行谐波补偿成为重要方向。其原理是,从补偿对象中检测出谐波电流,然后产生一个与该谐波电流大小相等极性相反的补偿电流,从而使电网电流只含有基波分量。这种滤波器能对频率和幅值都变化的谐波进行跟踪补偿,且补偿特性不受电网阻抗的影响。
大容量变流器减少谐波的主要方法是采用多重化技术:将多个方波叠加以消除次数较低的谐波,从而得到接近正弦的阶梯波。重数越多,波形越接近正弦,但电路结构越复杂。小容量变流器为了实现低谐波和高功率因数,一般采用二极管整流加PWM斩波,常称之为功率因数校正(PEC)。典型的电路有升压型、降压型、升降压型等。
解决EMI的措施是克服开关器件导通和关断时出现过大的电流上升率di/dt和电压上升率du/dt,目前比较引入注目的是零电流开关(ZCS)和零电压开关(ZVS)电路。方法是:
(1)开关器件上串联电感,这样可抑制开关器件导通时的di/dt,使器件上不存在电压、电流重叠区,减少了正关损耗;
(2)开关器件上并联电容,当器件关断后抑制du/dt上升,器件上不存在电压、电流重叠区,减少了开关损耗;
(3)器件上反并联二极管,在二极管导通期间,开关器件呈零电压、零电流状态,此时驱动器件导通或关断能实现ZVS、ZCS动作。
早期的方法是采用同步调相机,它是专门用来产生无功功率的同步电机,利用过励磁和欠励磁分别发出不同大小的容性或感性无功功率。然而,由于它是旋转电机,噪声和损耗都较大,运行维护也复杂,响应速度慢。因此,在很多情况下已无法适应快速无功功率补偿的要求。
另一种方法是采用饱和电抗器的静止无功补偿装置。它具有静止型和响应速度快的优点,但由于其铁心需磁化到饱和状态,损耗和噪声都很大,而且存在非线性电路的一些特殊问题,又不能分相调节以补偿负载的不平衡,所以未能占据静止无功补偿装置的主流。
随着电力电子技术的不断发展,使用SCR、GTO和IGBT等的静止无功补偿装置得到了长足发展,其中以静止无功发生器最为优越。它具有调节速度快、运行范围宽的优点,而且在采取多重化、多电平或PWM技术等措施后,可大大减少补偿电流中谐波含量。更重要的是,静止无功发生器使用的抗器和电容元件小,大大缩小装置的体积和成本。静止无功发生器代表着动态无功补偿装置的发展方向。
我们相信,电力电子技术将成为21世纪重要的支柱技术之一,变频技术在电力电子技术领域中占有重要的地位,近年来在中压变频调速和电力牵引领域中的发展引人注目。随着全球经济一体化及我国加人世界贸易组织,我国电力电子技术及变频技术产业将出现前所未有的发展机遇。
[2]陈坚.电力电子学-电力电子变换和控制技术.北京:高等教育出版社,2002.
薄膜制备方法多种多样,总的说来可以分为两种——物理的和化学的。物理方法指在薄膜的制备过程中,原材料只发生物理的变化,而化学方法中,则要利用到一些化学反应才能得到薄膜。
目前光电子器件的制备中常用的化学方法主要有等离子体增强化学气相淀积(PECVD)和金属有机物化学气相淀积(MOCVD)。
化学气相淀积是制备各种薄膜的常用方法,利用这一技术可以在各种基片上制备多种元素及化合物薄膜。传统的化学气相淀积一般需要在高温下进行,高温常常会使基片受到损坏,而等离子体增强化学气相淀积(PECVD)则能解决这一问题。等离子体的基本作用是促进化学反应,等离子体中的电子的平均能量足以使大多数气体电离或分解。用电子动能代替热能,这就大大降低了薄膜制备环境的温度,采用PECVD技术,一般在1000℃以下。利用PECVD技术可以制备SiO2、Si3N4、非晶Si:H、多晶Si、SiC等介电和半导体膜,能够满足光电子器件的研发和制备对新型和优质材料的大量需求。
金属有机物化学气相淀积(MOCVD)是利用有机金属热分解进行气相外延生长的先进技术,目前主要用于化合物半导体的薄膜气相生长,因此在以化合物半导体为主的光电子器件的制备中,它是一种常用的方法。利用MOCVD技术可以合成组分按任意比例组成的人工合成材料,薄膜厚度可以精确控制到原子级,从而可以很方便的得到各种薄膜结构型材料,如量子阱、超晶格等。这种技术使得量子阱结构在激光器和LED等器件中得到广泛的应用,大大提高了器件性能。2.物理气相淀积(PVD)
化学反应一般需要在高温下进行,基片所处的环境温度一般较高,这样也就同时限制了基片材料的选取。相对于化学气相淀积的这些局限性,物理气相淀积(PVD)则显示出其独有的优越性,它对淀积材料和基片材料均没有限制。制备光电子器件的薄膜常用的PVD技术有蒸发冷凝法、溅射法和分子束外延。
蒸发冷凝法是薄膜制备中最为广泛使用的一种技术,它是在真空环境下,给待蒸发物提供足够的热量以获得蒸发所必需的蒸汽压,在适当的温度下,蒸发粒子在基片上凝结,实现薄膜沉积。蒸发冷凝法按加热源的不同有可分为电阻加热法、等离子体加热法、高频感应法、激光加热法和电子束加热法,后两种在光电子器件的制备中比较常用。
电子束加热法是将高速电子束打到待蒸发材料上,电子的动能迅速转换成热能,是材料蒸发。它的优点是可以避免待蒸发材料与坩埚发生反应,从而得到高纯的薄膜材料。近年来人们又研制出具有磁聚焦和磁弯曲的电子束蒸发装置,使用这样的装置,电子束可以被聚焦到位于基片之间的一个或多个支架中的待蒸发物上。
激光蒸发法是一种在高真空下制备薄膜的技术,激光作为热源使待蒸镀材料蒸发。激光源放置在真空室外部,激光光束通过真空室窗口打到待蒸镀材料上使之蒸发,最后沉积在基片上。激光蒸发法具有超清洁、蒸发速度快、容易实现顺序多元蒸发等优点。后来人们使用脉冲激光,可使原材料在很高温度下迅速加热和冷却,瞬间蒸发在靶的某一小区域得以实现。由于脉冲激光可产生高功率脉冲,完全可以创造瞬间蒸发的条件,因此脉冲激光蒸发法对于化合物材料的组元蒸发具有很大优势。使用激光蒸发法可以得到光学性质较好的薄膜材料,包括ZnO和Ge膜等。
溅射是指具有足够高能量的粒子轰击固体表面(靶)使其中的原子或分子发射出来。这些被溅射出来的粒子带有一定的动能,并具有方向性。将溅射出来的物质沉积到基片上形成薄膜的方法成为溅射法,它也是物理气相淀积法的一种。溅射法又分直流溅射、离子溅射、射频溅射和磁控溅射,目前用的比较多的是后两种。在溅射靶上加有射频电压的溅射称为射频溅射,它是适用于各种金属和非金属材料的一种溅射淀积方法。磁控溅射的原理是,溅射产生的二次电子在阴极位降区内被加速称为高能电子,但它们并不直接飞向阴极,而是在电场和磁场的联合作用下进行近似摆线的运动。在运动中高能电子不断地与气体分子发生碰撞,并向后者转移能量,使之电离而本身成为低能电子。这些低能电子沿磁力线漂移到阴极附近的辅助阳极而被吸收,从而避免了高能电子对基片的强烈轰击,同时,电子要经过大约上百米的飞行才能到达阳极,碰撞频率大约为107/s,因此磁控溅射的电离效率高。磁控溅射不仅可以得到很高的溅射速率,而且在溅射金属时还可以避免二次电子轰击而使基板保持接近冷态。
分子束外延(MBE)技术是一种可在原子尺度上精确控制外延厚度、掺杂和界面平整度的超薄层薄膜制备技术。所谓“外延”就是在一定的单晶材料衬底上,沿着衬底的某个指数晶面向外延伸生长一层单晶薄膜。分子束外延是在超高真空条件下,精确控制原材料的分子束强度,把分子束射入被加热的底片上而进行外延生长的。由于其蒸发源、监控系统和分析系统的高性能和真空环境的改善,能够得到极高质量的薄膜单晶体,可以说它是一种以真空蒸镀为基础的一种全新的薄膜生长方法。
论文摘要:纳米光电子技术是一门新兴的技术,近年来越来越受到世界各国的重视,而随着该技术产生的纳米光电子器件更是成为了人们关注的焦点。主要介绍了纳米光电子器件的发展现状。
1纳米导线年,美国加利福尼亚大学伯克利分校的研究人员在只及人的头发丝千分之一的纳米光导线上制造出世界最小的激光器-纳米激光器。这种激光器不仅能发射紫外激光,经过调整后还能发射从蓝色到深紫外的激光。研究人员使用一种称为取向附生的标准技术,用纯氧化锌晶体制造了这种激光器。他们先是培养纳米导线,即在金层上形成直径为20nm~150nm,长度为10000nm的纯氧化锌导线。然后,当研究人员在温室下用另一种激光将纳米导线中的纯氧化锌晶体激活时,纯氧化锌晶体会发射波长只有17nm的激光。这种纳米激光器最终有可能被用于鉴别化学物质,提高计算机磁盘和光子计算机的信息存储量。
继微型激光器、微碟激光器、微环激光器、量子雪崩激光器问世后,美国加利福尼亚伯克利大学的化学家杨佩东及其同事制成了室温纳米激光器。这种氧化锌纳米激光器在光激励下能发射线nm的激光,被认为是世界上最小的激光器,也是采用纳米技术制造的首批实际器件之一。在开发的初始阶段,研究人员就预言这种ZnO纳米激光器容易制作、亮度高、体积小,性能等同甚至优于GaN蓝光激光器。由于能制作高密度纳米线阵列,所以,ZnO纳米激光器可以进入许多今天的GaAs器件不可能涉及的应用领域。为了生长这种激光器,ZnO纳米线要用催化外延晶体生长的气相输运法合成。首先,在蓝宝石衬底上涂敷一层1nm~3.5nm厚的金膜,然后把它放到一个氧化铝舟上,将材料和衬底在氨气流中加热到880℃~905℃,产生Zn蒸汽,再将Zn蒸汽输运到衬底上,在2min~10min的生长过程内生成截面积为六边形的2μm~10μm的纳米线。研究人员发现,ZnO纳米线形成天然的激光腔,其直径为20nm~150nm,其大部分(95%)直径在70nm~100nm。为了研究纳米线的受激发射,研究人员用Nd:YAG激光器(266nm波长,3ns脉宽)的四次谐波输出在温室下对样品进行光泵浦。在发射光谱演变期间,光随泵浦功率的增大而激射,当激射超过ZnO纳米线kW/cm)时,发射光谱中会出现最高点,这些最高点的线nm,比阈值以下自发射顶点的线以上。这些窄的线宽及发射强度的迅速提高使研究人员得出结论:受激发射的确发生在这些纳米线中。因此,这种纳米线阵列可以作为天然的谐振腔,进而成为理想的微型激光光源。研究人员相信,这种短波长纳米激光器可应用在光计算、信息存储和纳米分析仪等领域中。
2010年前后,蚀刻在半导体片上的线nm以下,在电路中移动的将只有少数几个电子,一个电子的增加和减少都会给电路的运行造成很大影响。为了解决这一问题,量子阱激光器就诞生了。在量子力学中,把能够对电子的运动产生约束并使其量子化的势场称之成为量子阱。而利用这种量子约束在半导体激光器的有源层中形成量子能级,使能级之间的电子跃迁支配激光器的受激辐射,这就是量子阱激光器。目前,量子阱激光器有两种类型:量子线激光器和量子点激光器。
近日,科学家研制出功率比传统激光器大1000倍的量子线激光器,从而向创造速度更快的计算机和通信设备迈进了一大步。这种激光器可以提高音频、视频、因特网及其他采用光纤网络的通信方式的速度,它是由来自耶鲁大学、位于新泽西洲的朗讯科技公司贝尔实验室及德国德累斯顿马克斯·普朗克物理研究所的科学家们共同研制的。这些较高功率的激光器会减少对昂贵的中继器的要求,因为这些中继器在通信线mile)安装一个,再次产生激光脉冲,脉冲在光纤中传播时强度会减弱(中继器)。
由直径小于20nm的一堆物质构成或者相当于60个硅原子排成一串的长度的量子点,可以控制非常小的电子群的运动而不与量子效应冲突。科学家们希望用量子点代替量子线获得更大的收获,但是,研究人员已制成的量子点激光器却不尽人意。原因是多方面的,包括制造一些大小几乎完全相同的电子群有困难。大多数量子装置要在极低的温度条件下工作,甚至微小的热量也会使电子变得难以控制,并且陷入量子效应的困境。但是,通过改变材料使量子点能够更牢地约束电子,日本电子技术实验室的松本和斯坦福大学的詹姆斯和哈里斯等少数几位工程师最近已制成可在室温下工作的单电子晶体管。但很多问题仍有待解决,开关速度不高,偶然的电能容易使单个电子脱离预定的路线。因此,大多数科学家正在努力研制全新的方法,而不是仿照目前的计算机设计量子装置。
微腔激光器是当代半导体研究领域的热点之一,它采用了现代超精细加工技术和超薄材料加工技术,具有高集成度、低噪声的特点,其功耗低的特点尤为显著,100万个激光器同时工作,功耗只有5W。该激光器主要的类型就是微碟激光器,即一种形如碟型的微腔激光器,最早由贝尔实验室开发成功。其内部为采用先进的蚀刻工艺蚀刻出的直径只有几微米、厚度只有100nm的极薄的微型园碟,园碟的周围是空气,下面靠一个微小的底座支撑。由于半导体和空气的折射率相差很大,微碟内产生的光在此结构内发射,直到所产生的光波积累足够多的能量后沿着它的边缘折射,这种激光器的工作效率很高、能量阈值很低,工作时只需大约100μA的电流。
长春光学精密机械学院高功率半导体激光国家重点实验室和中国科学院北京半导体研究所从经典量子电动力学理论出发研究了微碟激光器的工作原理,采用光刻、反应离子刻蚀和选择化学腐蚀等微细加工技术制备出直径为9.5μm、低温光抽运InGaAs/InGaAsP多量子阱碟状微腔激光器。它在光通讯、光互联和光信息处理等方面有着很好的应用前景,可用作信息高速公路中最理想的光源。
微腔光子技术,如微腔探测器、微腔谐振器、微腔光晶体管、微腔放大器及其集成技术研究的突破,可使超大规模集成光子回路成为现实。因此,包括美国在内的一些发达国家都在微腔激光器的研究方面投人大量的人力和物力。长春光机与物理所的科技人员打破常规,用光刻方法实现了碟型微腔激光器件的图形转移,用湿法及干法刻蚀技术制作出碟型微腔结构,在国内首次研制出直径分别为8μm、4.5μm和2μm的光泵浦InGaAs/InGaAsP微碟激光器。其中,2μm直径的微碟激光器在77K温度下的激射阔值功率为5μW,是目前国际上报道中的最好水平。此外,他们还在国内首次研制出激射波长为1.55μm,激射阈值电流为2.3mA,在77K下激射直径为10μm的电泵浦InGaAs/InGaAsP微碟激光器以及国际上首个带有引出电极结构的电泵浦微柱激光器。值得一提的是,这种微碟激光器具有高集成度、低阈值、低功耗、低噪声、极高的响应、可动态模式工作等优点,在光通信、光互连、光信息处理等方面的应用前景广阔,可用于大规模光子器件集成光路,并可与光纤通信网络和大规模、超大规模集成电路匹配,组成光电子信息集成网络,是当代信息高速公路技术中最理想的光源;同时,可以和其他光电子元件实现单元集成,用于逻辑运算、光网络中的光互连等。
2001年,美国加利福尼亚大学伯克利分校的研究人员在只及人的头发丝千分之一的纳米光导线上制造出世界最小的激光器-纳米激光器。这种激光器不仅能发射紫外激光,经过调整后还能发射从蓝色到深紫外的激光。研究人员使用一种称为取向附生的标准技术,用纯氧化锌晶体制造了这种激光器。他们先是培养纳米导线,即在金层上形成直径为20nm~150nm,长度为10000nm的纯氧化锌导线。然后,当研究人员在温室下用另一种激光将纳米导线中的纯氧化锌晶体激活时,纯氧化锌晶体会发射波长只有17nm的激光。这种纳米激光器最终有可能被用于鉴别化学物质,提高计算机磁盘和光子计算机的信息存储量。
继微型激光器、微碟激光器、微环激光器、量子雪崩激光器问世后,美国加利福尼亚伯克利大学的化学家杨佩东及其同事制成了室温纳米激光器。这种氧化锌纳米激光器在光激励下能发射线nm的激光,被认为是世界上最小的激光器,也是采用纳米技术制造的首批实际器件之一。在开发的初始阶段,研究人员就预言这种ZnO纳米激光器容易制作、亮度高、体积小,性能等同甚至优于GaN蓝光激光器。由于能制作高密度纳米线阵列,所以,ZnO纳米激光器可以进入许多今天的GaAs器件不可能涉及的应用领域。为了生长这种激光器,ZnO纳米线要用催化外延晶体生长的气相输运法合成。首先,在蓝宝石衬底上涂敷一层1nm~3.5nm厚的金膜,然后把它放到一个氧化铝舟上,将材料和衬底在氨气流中加热到880℃~905℃,产生Zn蒸汽,再将Zn蒸汽输运到衬底上,在2min~10min的生长过程内生成截面积为六边形的2μm~10μm的纳米线。研究人员发现,ZnO纳米线形成天然的激光腔,其直径为20nm~150nm,其大部分(95%)直径在70nm~100nm。为了研究纳米线的受激发射,研究人员用Nd:YAG激光器(266nm波长,3ns脉宽)的四次谐波输出在温室下对样品进行光泵浦。在发射光谱演变期间,光随泵浦功率的增大而激射,当激射超过ZnO纳米线kW/cm)时,发射光谱中会出现最高点,这些最高点的线nm,比阈值以下自发射顶点的线以上。这些窄的线宽及发射强度的迅速提高使研究人员得出结论:受激发射的确发生在这些纳米线中。因此,这种纳米线阵列可以作为天然的谐振腔,进而成为理想的微型激光光源。研究人员相信,这种短波长纳米激光器可应用在光计算、信息存储和纳米分析仪等领域中。
2010年前后,蚀刻在半导体片上的线nm以下,在电路中移动的将只有少数几个电子,一个电子的增加和减少都会给电路的运行造成很大影响。为了解决这一问题,量子阱激光器就诞生了。在量子力学中,把能够对电子的运动产生约束并使其量子化的势场称之成为量子阱。而利用这种量子约束在半导体激光器的有源层中形成量子能级,使能级之间的电子跃迁支配激光器的受激辐射,这就是量子阱激光器。目前,量子阱激光器有两种类型:量子线激光器和量子点激光器。
近日,科学家研制出功率比传统激光器大1000倍的量子线激光器,从而向创造速度更快的计算机和通信设备迈进了一大步。这种激光器可以提高音频、视频、因特网及其他采用光纤网络的通信方式的速度,它是由来自耶鲁大学、位于新泽西洲的朗讯科技公司贝尔实验室及德国德累斯顿马克斯·普朗克物理研究所的科学家们共同研制的。这些较高功率的激光器会减少对昂贵的中继器的要求,因为这些中继器在通信线mile)安装一个,再次产生激光脉冲,脉冲在光纤中传播时强度会减弱(中继器)。
由直径小于20nm的一堆物质构成或者相当于60个硅原子排成一串的长度的量子点,可以控制非常小的电子群的运动而不与量子效应冲突。科学家们希望用量子点代替量子线获得更大的收获,但是,研究人员已制成的量子点激光器却不尽人意。原因是多方面的,包括制造一些大小几乎完全相同的电子群有困难。大多数量子装置要在极低的温度条件下工作,甚至微小的热量也会使电子变得难以控制,并且陷入量子效应的困境。但是,通过改变材料使量子点能够更牢地约束电子,日本电子技术实验室的松本和斯坦福大学的詹姆斯和哈里斯等少数几位工程师最近已制成可在室温下工作的单电子晶体管。但很多问题仍有待解决,开关速度不高,偶然的电能容易使单个电子脱离预定的路线。因此,大多数科学家正在努力研制全新的方法,而不是仿照目前的计算机设计量子装置。
微腔激光器是当代半导体研究领域的热点之一,它采用了现代超精细加工技术和超薄材料加工技术,具有高集成度、低噪声的特点,其功耗低的特点尤为显著,100万个激光器同时工作,功耗只有5W。
该激光器主要的类型就是微碟激光器,即一种形如碟型的微腔激光器,最早由贝尔实验室开发成功。其内部为采用先进的蚀刻工艺蚀刻出的直径只有几微米、厚度只有100nm的极薄的微型园碟,园碟的周围是空气,下面靠一个微小的底座支撑。由于半导体和空气的折射率相差很大,微碟内产生的光在此结构内发射,直到所产生的光波积累足够多的能量后沿着它的边缘折射,这种激光器的工作效率很高、能量阈值很低,工作时只需大约100μA的电流。
长春光学精密机械学院高功率半导体激光国家重点实验室和中国科学院北京半导体研究所从经典量子电动力学理论出发研究了微碟激光器的工作原理,采用光刻、反应离子刻蚀和选择化学腐蚀等微细加工技术制备出直径为9.5μm、低温光抽运InGaAs/InGaAsP多量子阱碟状微腔激光器。它在光通讯、光互联和光信息处理等方面有着很好的应用前景,可用作信息高速公路中最理想的光源。
微腔光子技术,如微腔探测器、微腔谐振器、微腔光晶体管、微腔放大器及其集成技术研究的突破,可使超大规模集成光子回路成为现实。因此,包括美国在内的一些发达国家都在微腔激光器的研究方面投人大量的人力和物力。长春光机与物理所的科技人员打破常规,用光刻方法实现了碟型微腔激光器件的图形转移,用湿法及干法刻蚀技术制作出碟型微腔结构,在国内首次研制出直径分别为8μm、4.5μm和2μm的光泵浦InGaAs/InGaAsP微碟激光器。其中,2μm直径的微碟激光器在77K温度下的激射阔值功率为5μW,是目前国际上报道中的最好水平。此外,他们还在国内首次研制出激射波长为1.55μm,激射阈值电流为2.3mA,在77K下激射直径为10μm的电泵浦InGaAs/InGaAsP微碟激光器以及国际上首个带有引出电极结构的电泵浦微柱激光器。值得一提的是,这种微碟激光器具有高集成度、低阈值、低功耗、低噪声、极高的响应、可动态模式工作等优点,在光通信、光互连、光信息处理等方面的应用前景广阔,可用于大规模光子器件集成光路,并可与光纤通信网络和大规模、超大规模集成电路匹配,组成光电子信息集成网络,是当代信息高速公路技术中最理想的光源;同时,可以和其他光电子元件实现单元集成,用于逻辑运算、光网络中的光互连等。
据报道,世界上最早的纳米激光器是由美国加州大学伯克利分校的科学家于2001年制造的,当时使用的是氧化锌纳米线,可发射紫外光,经过调整后还能发射从蓝色到深紫外的激光。但是,美中不足的是只有用另一束激光将纳米线中的氧化锌晶体激活,其才会发射出激光。而新型纳米激光器具备了电子自动开关的性能,无需借助外力激活,这无疑会使其实用性大为增强。
随着科学技术的不断进步,电力电子器件装置当今得到了广泛的应用,主要涉及到交通运输业、先进装备制造业、航天航空和坦克飞机等现代化装备中。得益于电子技术的应用优势,全球电子产品产业得到了快速的发展,给全球的经济、文化、军事等各领域带来了实质性的影响。电子技术可以划分为两类:一种是电子信息技术,电力电子元件在电子信息技术上的应用可以实现信息的传送、储存和控制等目的;第二种就是保证电能正常安全的进行传输,同时将能源和信息有效的结合起来。在社会的不断发展中,各行各业对于优质优量的电能都是迫切需要的,而随着一次次电力电子技术的改革,电力电子器件的应用范围也更加广泛,成为了工业生产中不可或缺的重要元件。电力电子技术的发展为人类的环保和生活都做出了重要的贡献,成为了将弱电与强电、信息与电子、传统产业与现代产业完美结合的媒介。所以电力电子器件的研究成为了电力电子行业的重要课题。
上世纪50年代开始,全球第一支晶闸管诞生,这就标志着现代电气传动中的电力电子技术登上历史的舞台,基于晶闸管研发的可控硅整流装置成为了电气传动行业的一次变革,开启了以电力电子技术控制和变换电能的变流器时代,至此电力电子技术产生。到70年代时晶闸管已经研发出来可以承受高压大电流的产品,这一代的半控型器材被称之为第一代电力电子器件。但是晶闸管的缺点就是不能自关断,随着电力电子理论和工艺的不断进步,随后研发出了GTR.GTO和MOSFET等自关断的全控型,这一类产品被称之为第二代电力电子器件。之后出现了第三代电力电子器件,主要以绝缘栅双极晶体管为代表,第三代电力电子器件具有频率快、反映速度快和能耗较低的特点。在近些年的研究中,人们开始将微电子技术与电力电子技术进行融合,从而制造出了具有多功能、智能化、高效率的全控性能集成器件。电力电子器件中使用最多,构造简单的就是整流管,当前整流管可以分为普通型、快恢复型和肖特基型三种。在改善电力电子性能、减少电路能源损耗和提升电流效率等方面,电力整流管发挥着重要的作用。美国通用电气公司于1958年研发出了第一个用于工业的普通晶闸管,为今后的工艺调整和新器件的研发打下了基础,随后的十年中各式各样的晶闸管面世,例如双向、逆向逆导和非对称等,到现如今这些晶闸管还一直在被使用。为了解决晶闸管的不可自关断问题,美国于1964年研发了0.5kV/0.01kA的可关断晶闸管,到今天发展成为9kV/2.5kA/0.8kHZ和6kV/6kA/1kHZ。可关断晶闸管具有容量大和低频率的特点,在大功率牵引驱动中发挥着极大的作用。随后到70年代,GTR产品成功面世,其额定值已经达到了1.8kV/0.8kA/2kHZ和0.6kV/0.003kA/100kHZ,GTR产品具有极大的灵活性,有着开关能源消耗低和时间短的优点,在中等容量和频率电路中发挥着主要作用。而第三代的绝缘栅型双极性晶体管,对电压能够进行控制,有着输入阻率抗性大和驱动功率小等特点,有着巨大的发展潜力。
从1960年开始到1980年,这二十年间使用最多的就是晶闸管,相比由电动发电机和水银整流器组合而成的传统晶闸管,有着功率大、高效率和体积小等优势,在变流技术中占据着重要的地位。其中直流斩波器广泛的应用于国内外的城市电车中。但是这类晶闸管存在着不可关断和低工作频率的缺点,为了解决这一问题,门极可关断晶闸管被研制出来,在日本和欧洲等国家人们开始研制以高电压和高功率的可关断晶闸管为基础的用于城市轨道交通电动车组的变频器。
随着可关断晶闸管的广泛应用,人们发现可关断晶闸管的关断增益还是比较低,并且在进行关断时所消耗的能源比较多,关于可关断晶闸管的应用出现广泛的争议。随着绝缘栅双级晶体管的研发成功,人们发现相比可关断晶闸管,绝缘栅双级晶体管具有更多的优点,于是开始将绝缘栅双级晶体管广泛用于电动车的开发上。
智能功率模块是在绝缘栅双级晶体管基础上结合了故障检测保护电路所研制成的电力电子模块,在近年来在很多国家得到了推广。相比以前的功率器件,智能功率模块有着以下特点:首先具备电流传感功能,能够持续监测功率器件电流;具有温度传感功能;此外还具备高电压和电流,能有效的降低通态和开关的能源损耗,无需另外设计驱动电路,应用起来了更加便捷。
在电力电子器件的初期发展阶段,人们将之称之为功率半导体器件,其功率远远大于传统的控制用半导体器件和通信用半导体器件,随着科技水平的发展,电力电子器件逐步的更新换代。除了传统的双向晶闸管、快速晶闸管、逆导晶闸管之外,大量新型电力电子器件出现,开始朝着纵深的发展趋势发展,给电力电子器件产业的发展带带了新的生机。
[1]盛况,郭清.碳化硅电力电子器件在电网中的应用展望[J].南方电网技术.2016(03)
[2]赵争鸣,袁立强,鲁挺,贺凡波.我国大容量电力电子技术与应用发展综述[J].电气工程学报.2015(04)
上世纪50年代末晶闸管在美国问世,标志着电力电子技术就此诞生。第一代电力电子器件主要是可控硅整流器(SCR),我国70年代将其列为节能技术在全国推广。然而,SCR毕竟是一种只能控制其导通而不能控制关断的半控型开关器件,在交流传动和变频电源的应用中受到限制。70年代以后陆续发明的功率晶体管(GTR)、门极可关断晶闸管(GTO)、功率MOS场效应管(PowerMOSFET)、绝缘栅晶体管(IGBT)、静电感应晶体管(SIT)和静电感应晶闸管(SITH)等,它们的共同特点是既控制其导通,又能控制其关断,是全控型开关器件,由于不需要换流电路,故体积、重量较之SCR有大幅度下降。当前,IGBT以其优异的特性已成为主流器件,容量大的GTO也有一定地位[1][2][3]。
许多国家都在努力开发大容量器件,国外已生产6000V的IGBT。IEGT(injectionenhancedgatethyristor)是一种将IGBT和GTO的优点结合起来的新型器件,已有1000A/4500V的样品问世。IGCT(integratedgateeommutatedthyristor)在GTO基础上采用缓冲层和透明发射极,它开通时相当于晶闸管,关断时相当于晶体管,从而有效地协调了通态电压和阻断电压的矛盾,工作频率可达几千赫兹[2][3]。瑞士ABB公司已经推出的IGCT可达4500一6000V,3000一3500A。MCT因进展不大而引退而IGCT的发展使其在电力电子器件的新格局中占有重要的地位。与发达国家相比,我国在器件制造方面比在应用方面有更大的差距。高功率沟栅结构IGBT模块、IEGT、MOS门控晶闸管、高压砷化稼高频整流二极管、碳化硅(SIC)等新型功率器件在国外有了最新发展。可以相信,采用GaAs、SiC等新型半导体材料制成功率器件,实现人们对“理想器件”的追求,将是21世纪电力电子器件发展的主要趋势。
高可靠性的电力电子积木(PEBB)和集成电力电子模块(IPEM)是近期美国电力电子技术发展新热点。GTO和IGCT,IGCT和高压IGBT等电力电子新器件之间的激烈竞争,必将为21世纪世界电力电子新技术和变频技术的发展带来更多的机遇和挑战。
变频技术是应交流电机无级调速的需要而诞生的。电力电子器件的更新促使电力变换
技术的不断发展。起初,变频技术只局限于变频不能变压。20世纪70年代开始,脉宽调制变压变频(PWM-VVVF)调速研究引起了人们的高度重视。20世纪80年代,作为变频技术核心的PWM模式优化问题吸引着人们的浓厚兴趣,并得出诸多优化模式,如:调制波纵向分割法、同相位载波PWM技术、移相载波PWM技术、载波调制波同时移相PWM技术等。
VVVF变频器的控制相对简单,机械特性硬度也较好,能够满足一般传动的平滑调速要求,已在产业的各个领域得到广泛应用。但是,这种控制方式在低频时,由于输出电压较小,受定子电阻压降的影响比较显著,故造成输出最大转矩减小。
矢量控制变频调速的做法是:将异步电动机在三相坐标系下的定子交流电流Ia、Ib、Ic通过三相——二相变换,等效成同步旋转坐标系下的直流电流Iml、Itl,然后模仿直流电动机的控制方法,求得直流电动机的控制量,经过相应的坐标反变换,实现对异步电动机的控制。
直接转矩控制直接在定子坐标系下分析交流电动机的数学模型,控制电动机的磁链和转矩。它不需要将交流电动机化成等效直流电动机,因而省去了矢量旋转变换中的许多复杂计算;它不需要模仿直流电动机的控制,也不需要为解耦而简化交流电动机的数学模型。
VVVF变频、矢量控制变频、直接转矩控制变频都是交—直—交变频中的一种。其共同缺点是输入功率因数低,谐波电流大,直流回路需要大的储能电容,再生能量又不能反馈回电网,即不能进行四象限运行。为此,矩阵式交—交变频应运而生。
20世纪70年代,家用电器开始逐步变频化,出现了电磁烹任器、变频照明器具、变频空调、变频微波炉、变频电冰箱、IH(感应加热)饭堡、变频洗衣机等[4]。
首先是电冰箱,由于它处于全天工作,采用变频制冷后,压缩机始终处在低速运行状态,可以彻底消除因压缩机起动引的噪声,节能效果更加明显。其次,空调器使用变频后,扩大了压缩机的工作范围,不需要压缩机在断续状态下运行就可实现冷、暖控制,达到降低电力消耗,消除由于温度变动而引起的不适感。近年来,新式的变频冷藏库不但耗电量减少、实现静音化,而且利用高速运行能实现快速冷冻。
在洗衣机方面,过去使用变频实现可变速控制,提高洗净性能,新流行的洗衣机除了节能和静音化外,还在确保衣物柔和洗涤等方面推出新的控制内容;电磁烹任器利用高频感应加热使锅子直接发热,没有燃气和电加热的炽热部分,因此不但安全,还大幅度提高加热效率,其工作频率高于听觉之上,从而消除了饭锅振动引起的噪声。
电力电子装置中的相控整流和不可控二极管整流使输入电流波形发生严重畸变,不但大大降低了系统的功率因数,还引起了严重的谐波污染。
另外,硬件电路中电压和电流的急剧变化,使得电力电子器件承受很大的电应力,并给周围的电气设备及电波造成严重的电磁干扰(EM1),而且情况日趋严重。许多国家都已制定了限制谐波的国家标准,国际电气电子工程师协会(IEEE)、国际电工委员会(IEC)和国际大电网会议(CIGRE)纷纷推出了自己的谐波标准。我国政府也制定了限制谐波的有关规定[5]。
为了抑制电力电子装置产生的谐波,一种方法是进行谐波补偿,即设置谐波补偿装置,使输入电流成为正弦波[3]。
传统的谐波补偿装置是采用IC调谐滤波器,它既可补偿谐波,又可补偿无功功率。其缺点是,补偿特性受电网阻抗和运行状态影响,易和系统发生并联谐振,导致谐波放大,使LC滤波器过载甚至烧毁。此外,它只能补偿固定频率的谐波,效果也不够理想。
电力电子器件普及应用之后,运用有源电力滤波器进行谐波补偿成为重要方向。其原理是,从补偿对象中检测出谐波电流,然后产生一个与该谐波电流大小相等极性相反的补偿电流,从而使电网电流只含有基波分量。这种滤波器能对频率和幅值都变化的谐波进行跟踪补偿,且补偿特性不受电网阻抗的影响。
大容量变流器减少谐波的主要方法是采用多重化技术:将多个方波叠加以消除次数较低的谐波,从而得到接近正弦的阶梯波。重数越多,波形越接近正弦,但电路结构越复杂。小容量变流器为了实现低谐波和高功率因数,一般采用二极管整流加PWM斩波,常称之为功率因数校正(PEC)。典型的电路有升压型、降压型、升降压型等。
解决EMI的措施是克服开关器件导通和关断时出现过大的电流上升率di/dt和电压上升率du/dt,目前比较引入注目的是零电流开关(ZCS)和零电压开关(ZVS)电路。方法是:
(1)开关器件上串联电感,这样可抑制开关器件导通时的di/dt,使器件上不存在电压、电流重叠区,减少了正关损耗;
(2)开关器件上并联电容,当器件关断后抑制du/dt上升,器件上不存在电压、电流重叠区,减少了开关损耗;
(3)器件上反并联二极管,在二极管导通期间,开关器件呈零电压、零电流状态,此时驱动器件导通或关断能实现ZVS、ZCS动作。
早期的方法是采用同步调相机,它是专门用来产生无功功率的同步电机,利用过励磁和欠励磁分别发出不同大小的容性或感性无功功率。然而,由于它是旋转电机,噪声和损耗都较大,运行维护也复杂,响应速度慢。因此,在很多情况下已无法适应快速无功功率补偿的要求。
另一种方法是采用饱和电抗器的静止无功补偿装置。它具有静止型和响应速度快的优点,但由于其铁心需磁化到饱和状态,损耗和噪声都很大,而且存在非线性电路的一些特殊问题,又不能分相调节以补偿负载的不平衡,所以未能占据静止无功补偿装置的主流。
随着电力电子技术的不断发展,使用SCR、GTO和IGBT等的静止无功补偿装置得到了长足发展,其中以静止无功发生器最为优越。它具有调节速度快、运行范围宽的优点,而且在采取多重化、多电平或PWM技术等措施后,可大大减少补偿电流中谐波含量。更重要的是,静止无功发生器使用的抗器和电容元件小,大大缩小装置的体积和成本。静止无功发生器代表着动态无功补偿装置的发展方向。
我们相信,电力电子技术将成为21世纪重要的支柱技术之一,变频技术在电力电子技术领域中占有重要的地位,近年来在中压变频调速和电力牵引领域中的发展引人注目。随着全球经济一体化及我国加人世界贸易组织,我国电力电子技术及变频技术产业将出现前所未有的发展机遇。
[2]陈坚.电力电子学-电力电子变换和控制技术.北京:高等教育出版社,2002.
随着我国社会经济的快速发展,我国的电力电子器件已经得到了极为广泛的运用,甚至已经渗透到了能源、环境、航空航天等各个领域,尤其是还涉及到了现代化国防武器装备等方面。由此可见,我国电力电子器件与电力电子技术的快速发展对于社会上的很多重要领域都产生重要的影响。电力电子器件及其应用的现状和发展的研究可以帮助工作人员加深对于现代电子技术的了解,发挥出信息电子技术在工业生产中的信息传输、处理、存储等作用。除此之外,电力电子技术也可以在很大程度上保障电能安全高效,实现内部资源的合理配置,为我国的工业生产提供能量和承担执行的功能。
随着社会经济的快速发展,我国的电力电子器件的发展前景越来越光明,早在上世纪,我国的电子技术就已经逐渐发展起来。首先电子技术涉及到信息电子技术和电力电子技术两大方面的内容,现代科技的飞速发展促进了信息电子技术的发展,与此同时电力电子技术也在电能的传输、处理、存储和控制等各个方面发挥出了自身独特的作用。对于当今我国工业发展来说,电力电子器件的应用和发展是极为必要的,因为我国的很多工厂和技术设备都与电力电子器件有着密切的联系。为了能够在最大范围内加快生产的速度和工作的效率,对电力电子技术这种比较先进的技术的开发是极为必要的,这主要是因为传统的电力电子器件的应用和发展已经远远落后于时代的发展速度,不适应我国工业生产的模式。
索然我国的电子技术的发展极为迅速,但是我们依旧可以发现现代人民群众随着生活水平的快速提高,逐渐对于工业生产的速度也提出了更高的要求。一旦我国的电子技术的发展无法满足现代人的需要,就难免会面临着被时代所淘汰的风险。因此,我国的电力电子器件必须要保证自身的创新度,工作人员也必须以制造出满足工业生产需求的电力电子器件为目标,积极寻找符合电力电子器件制造的原材料。除此之外,电力电子器件的制造需要耗费大量的人力物力财力,只有经过精密的实验才有可能制造出完善的电力电子器件,而且器件一旦制造出来就必须要及时接受大量实验,这些过程都离不开金钱和原材料的支持。只有好的原材料才是制造品质优良的电力电子器件的前提,而且我国电子电子器件的应用及发展也面临着资源短缺的风险。甚至某些研究人员和专家学者会受到资金、时间等各方面的限制,在进行电力电子器件的研发过程中会出现半途而废的状况。
首先太阳能光伏发电对于电力电子器件的发展来说是比较重要的,光伏建筑一体化应用对于电力电子器件的完善也发挥了独特的作用。光伏电池发电和建筑物外电池存在很多问题,虽然这类电池原件的成本比较低,但是总的来说这类电池和电子元件适合低日照水平,电池转换效率高,原材料比较易得。但是某些电力电子器件的转换效率一般,淘汰的产品还会污染环境。电力电子器件的开发和利用促进了光伏建筑一体化的进程,土地成本过高和二氧化碳的排放量过高等问题都可以得到有效解决,而且我国最新研发出的电力电子器件可以节省光伏电池支撑结构,节省光伏电池的具体安装成本,帮助相关建筑工作人员实现土地资源的合理利用。与此同时,电力电子器件可以将太阳能和建筑物进行有效结合,帮助相关工作人员解决电能供给的难题,而且也丰富了电力电子器件的原材料。首先我们可以发现,在进行电力电子器件的研究与开发时候,运用碳化硅制造的电子器件已经成为主要的研究方向。这主要是因为碳化硅电力电子器件的高压和高温的特性与我国传统的电力电子器件相比,具有很大优越性,完全可以保障新型电力电子器件的成本和质量。尤其是碳化硅的耐高压和高温,足以帮助相关工作人员展开对于新型电力电子器件的研究。
综上所述,电力电子技术的开发与运用对于我国工业领域的快速发展产生了明显的影响,尤其是大大提高了工人们的工作效率,在很大程度上也促进了社会经济的发展,增加了企业和工厂的经济效益。在对电力电子器件及其应用的现状的研究过程中,我们不难发现现阶段我国的电力电子器件在应用中依旧存在很多问题,针对这些问题,需要相关工作人员展开研究,积极寻找应对策略,促进电力电子器件的可持续发展。
[1]钱照明,张军明,盛况.电力电子器件及其应用的现状和发展[J].中国电机工程学报,2017-10-15.
[2]龚仲华.新型电力电子器件应用与拓扑结构改进——变频器的发展与展望系列之二[J].机床电器,2016-10-12.
(1)不可控器件。这类器件一般为两端器件,一端是阳极,另一端是阴极。与电子电路中的二极管一样,具有单向导电性。其开关操作仅取决于其在主电路中施加在阳、阴极间的电压和流过它的电流,正向电压使其导通,负向电压使其关断,流过它的电流是单方向的。不可控器件不能用控制信号来控制电流的通断,因此不需要驱动电路。这类器件就是功率二极管(PowerDiode)。
(2)半控型器件。这类器件是三端器件,除阳极和阴极外,还增加了一个控制门极。半控型器件也具有单向导电性,但开通不仅需在其阳、阴极间施加正向电压,而且还必须在门极和阴极间施加正向控制电压。门极和阴极间的控制电压仅控制其开通而不能控制其关断,器件的关断是由其在主电路中承受的电压和电流决定的。这类半控型器件是指晶闸管(Thyris-tor)及其大部分派生器件。
(3)全控型器件。这类器件也是带有控制端的三端器件,其控制端不仅可以控制其开通,还能控制其关断。这类器件很多,包括门极关断晶闸管(GTO)、功率晶体管(GTR)、功率场效应晶体管(功率MOS-FET)、绝缘栅双极晶体管(IGBT)。目前常用的是功率MOSFET和IGBT。
(1)电流驱动型器件。驱动信号加在器件控制端和公共端之间,通过从控制端注入或抽出电流来实现器件的导通或者关断的控制,这类电力电子器件称为电流驱动型器件或称为电流控制型器件。
(2)电压驱动型器件。通过施加在控制端和公共端之间的电压信号来实现器件的导通或者关断的控制,这类电力电子器件称为电压驱动型器件或称为电压控制型器件。
2.3按参与导电的情况分类按照器件内部电子和空穴两种载流子参与导电的情况,电力电子器件可分为三类:
(3)由单极型器件和双极型器件集成混合而成的器件称为复合型器件。典型电力电子器件的分类和用途见表1。
第一阶段是以整流管、晶闸管为代表的发展阶段。这一阶段的电力电子器件在低频、大功率变流领域中的应用占有优势,取代了早先的汞弧整流器。1947年美国著名的贝尔实验室发明了晶体管,功率二极管开始应用于电力领域,1956年贝尔实验室又发明了晶闸管,1957年美国通用电气公司开发出世界上第一只晶闸管器件,开创了传统的电力电子器件应用技术阶段,实现了弱电对强电的控制,在工业界引起了一场技术革命。晶闸管的迅速发展使得中大功率的各种变流装置和电动机传动系统得到了快速发展。但关断这些器件的控制电路存在体积大、效率低、可靠性差、工作频率低以及电网侧和负载上谐波严重等缺点。
第二阶段是20世纪70年代后期以GTO、GTR和功率MOSFET等全控型器件为代表的发展阶段。这一阶段的电力电子器件开关速度高于晶闸管,它们的应用使变流器的高频化得以实现。
第三阶段是20世纪80年代后期以IGBT复合型器件为代表的发展阶段。IGBT是功率MOSFET和GTR的复合。功率MOSFET的特点是驱动功率小、开关速度快;GTR的特点是通态压降小、载流能力大。IGBT的优越性能使之成为电力电子器件应用技术的主导器件。
第四阶段是以PIC、HVIC等功率集成电路为代表的发展阶段。高速、全控型、大电流、集成化和多功能的电力电子器件先后问世,开创了现代电力电子集成器件的新阶段。这一阶段,所使用的电力电子器件是将全控型电力电子器件与驱动电路、控制电路、传感电路、保护电路、逻辑电路等集成在一起的高度智能化PIC,它实现了器件与电路、强电与弱电、功率流与信息流的集成,成为机和电之间的智能化接口、机电一体化的基础单元。国内外电力电子器件的最新研制水平见表2。
电力电子器件的应用是电力电子技术的一部分。电力电子器件的应用技术称为变流技术,它包括用电力电子器件构成各种电力电子电路和对这些电路进行控制的技术,以及由这些电路构成电力电子装置和电力电子系统的技术。
(1)AC/DC变换。把交流电压变换成固定或可调的直流电压称为整流。这类变换装置通常称为整流器。
(2)DC/AC变换。把直流电变换成频率固定或可调的交流电称为逆变。这类变换装置通常称为逆变器。按电源性质可分为电压型逆变和电流型逆变,按控制方式可分为方波逆变、PWM型逆变和谐振型(软开关)逆变,按换相性质可分为靠电网换相的有源逆变和自关断的无源逆变。
(3)AC/AC变换。把一种形式的交流电变换成频率、电压可调或固定的另一种形式的交流电,只对电压、电流或对电路的通断进行控制而不改变频率的称为电力控制,改变频率的称为变频控制。
(4)DC/DC变换。把固定的直流电压(或电流)变换成可调或恒定的另一种直流电压(或电流),称为斩波。DC/DC变换广泛应用于计算机电源、各类仪器仪表、直流电动机调速及金属焊接等。谐振型软开关技术是DC/DC变换的发展方向,该技术可减小变换器体积、质量,提高可靠性,并有效解决开关损耗问题。
近年来,由于电力电子变流技术的迅猛发展,已经成为其他工业技术发展的重要基础。电力电子器件不仅应用于电力系统,也广泛应用于工业、交通运输、通信系统、计算机系统、新能源系统;还应用于照明、空调等家用电器中,可概括为以下几个领域:
(1)电力系统。为了控制和改善供电质量,发电厂发出的交流电必须经过电力电子装置的处理后送到用户端,没有电力电子器件的应用,就没有电力系统的现代化。从技术层面来讲,电力市场的引入将产生对电力品质的改善装置,如不间断电源(UPS)、静止无功补偿装置(SVC)、静止无功发生器(SVG)、动态电压恢复器(DVR)、电力有源滤波器(APF)、限流器、电力储能装置、微型燃气发电机(MicroCasTurbo)等新需求;再生能源、环保发电技术等分散发电将需要交直流变流装置。
(2)新能源利用与环境保护。电力电子器件装置还用于太阳能发电、风力发电装置与电力系统的联网,以及太阳能发电与风力发电电能的改善。现代社会对环境造成了严重的污染,温室气体的排放引起了国际社会的关注。我国改革开放以来能源消费量急剧上升,二氧化碳排放量也有较大增加。我国十分重视再生能源的开发,2006年我国实施了《再生能源法》。光伏、风力、燃料电池等新能源发电技术推动电力电子技术的应用,并形成电力电子技术的巨大市场。(3)混合动力汽车。由于电力电子器件应用技术的迅速发展,交流电动机的调速性能可以和直流电动机相媲美。在工业电动机的控制中,交流调速、直流调速以及节能和软起动都是通过电力电子器件实现的,其驱动结构如图1所示。
(4)交通运输。铁道电气化、电力机车控制、磁悬浮列车的使用都离不开电力电子器件,高级汽车中许多电机的控制是靠变频或斩波实现的。电动汽车的电动机控制和蓄电池充电也是靠电力电子装置实现,飞机、船舶、电梯等都离不开电力电子装置。
(5)电源。不间断电源、电解电源、电镀电源、开关电源、微机及仪器仪表电源、航空电源、通信电源、交流电子稳压电源、脉冲功率电源、动力牵引及传动控制用电源都是靠变流技术实现的。
“微电子器件”是电子科学与技术专业的专业核心基础课程,也是应用型本科院校培养新兴微电子与光电产业所需的应用技术人才必备的理论与实践基础课程[1]。该课程是连接半导体材料与器件和电路的桥梁,是后续深入学习集成电路专业课程,培养学生具备大规模集成电路设计能力必不可少的基础。”微电子器件”课程知识点抽象,关联性较强,内容编排上从半导体材料的掺杂改性,到P型、N型半导体结合形成半导体器件的基本结构单元,再到各种复杂结构的器件设计和控制,采用层层推进的方式,逻辑严密,理论性强,学生需要有良好的前期课程基础,并扎实掌握课程每一部分内容才能跟上学习的进度[2]。为了有效提高学生的学习兴趣及课程参与度,我们实施混合式自主教学资源库以及一体化TCAD综合实验平台的建设,依据行业需求、学生及课程特点、改革教学的方式方法,对学生能力培养起到非常有益的效果。
实时调研半导体行业对课程的需求,我们课题组明确教学资源建设内容,以毕业设计、课程设计、翻转课堂等形式让学生参与到混合式自主教学资源建设中来。已完成基于学院泛雅网络教学平台的部分微课视频、动画、题库、分层自主学习资源等信息化教学资源建设,已启动微电子器件简易教学展示平台研发并一体化集成SilvacoTCAD用户使用手册、微电子器件综合实验课件、实验指导书、教案、半导体器件工艺制备流程等实践教学资源。依托泛雅网络教学平台,引入了“翻转课堂”教学模式,并将陆续推进“翻转课堂”素材的制作;引入信息化教学手段对师生间的实时互动交流、智能化签到、考核机制等展开研究。在实施教学过程中检验已完成资源成效并实时优化改进,混合式自主教学资源建设架构如图1所示。
基于“互联网+”背景下的混合式教学资源建设,学生可以随时随地登陆网站学习课程资源、网上交流课程疑难问题、随时查看交流记录、使用综合实验平成课题任务等,信息化的教学环境使得学生可以自主参与到教学中来,柔性完成课题任务,增强教学的直观性、提高教学效果,激发学生学习兴趣,理论指导实际生产过程中培养学生创新能力、分析设计能力和项目开发能力,本课题拟从如下三个方面阐述混合式自主教学资的源建设内容。2.1分层自主学习资源整合与设计。修订课程基本资源库,结合行业企业发展不断更新补充课程拓展资源。本课程的分层自主学习资源从基础知识拓展、课程资源拓展及应用拓展三个层面展开,如图2所示。基础知识拓展:课程组依据多年教学经验,制作“高等代数”、“电路分析”、“大学物理”、“半导体物理”等与课程密切相关前期课程资源,更好的辅助学生对课程相关知识的理解。课程资源拓展:以毕业设计形式完成课程较为抽象难易理解知识点的动画制作,形象直观的模拟器件内部载流子的输运机制、器件内部能带及电学参数变化等;主讲教师对课程中基础的、重要的、关联性较强的内容录制微课视频,供学生线上反复学习;主讲教师近10年的微电子器件教学积累,熟练掌握教材基础上进一步“用活”教材,依托泛雅网络教学平台已建设100多道练习题,可以随时随地布置课前小测、课堂测验、课后练习等,辅助检验“翻转课堂”成效,客观题可以自动阅卷,极大提升教学效果和质量,节约资源。应用拓展:以课程设计及翻转课堂形式让学生参与制作器件故障检修、器件电极检测及器件电子电路应用等微视频,让学生从实际工程应用中理解课程内容。以毕业设计的形式引导学生与教学团队一起研发微电子器件教学展示平台[5],引入小型电子产品电路系统为工程系统化模型解构学科知识点,重构课程教学内容,逐步实现器件及其电子电路应用一体化教学,培养学生分析设计及创新能力。2.2信息化教学模式、考核机制设计。借助移动物联网助推“翻转课堂”教学模式。“翻转课堂”内容拟逐年推进,翻转资源建设集中在课程内部层层递进知识点、新型半导体器件及半导体器件电子电路应用三方面。微电子器件课程知识点关联性很强,例如,不同结构、不同工作条件下二极管的电流电压方程及三极管的电流电压方程建模过程是完全一样的,主讲教师仅以一种模型(小注入厚基区均匀掺杂)进行课堂讲解,依托泛雅网络平台制作小注入薄基区均匀掺杂、大注入厚基区均匀掺杂、小注入厚基区非均匀掺杂、均匀基区三极管、缓变基区三极管等其它结构、其它工作条件(外加交流小信号等)的翻转教学资源。主讲教师在课堂讲解第一层知识点,学生依据主讲教师讲解的基础知识点及泛雅平台上的分层自主学习资源(基础课件、视频、练习题等),搜索浏览相关网站资源、小组交流讨论学习,进而完善拓展后续递进知识点,制作PPT于课堂讲解讨论,培养学生对理论知识的理解并完成知识的迁移,激发学生学习兴趣,让学生充分参与到教学中来,提升教学效果与质量。翻转课堂实施流程如下图3所示。依拓泛雅网络教学平台,引进信息化课堂点名方式,可以灵活设置签到时间、签到状态、签到方法等,能有效真实地记录学生考勤状态,考勤统计分析自动记录功能,便于任课教师及辅导员实时掌握学生学习状态,对学生有一定预警作用,课堂出勤率明显提高;依托泛雅网络教学平台的讨论区根据课程需求展开专题讨论,便于师生在线一体化TCAD综合实验平台建设作者:单位:目前的微电子器件实践教学主要以验证性实验为主。这类实验大多为一体化封装的精密设备,内部功能电路连线已接好,学生仅需从面板进行简单操控,不能深入了解测试原理及实验意义,对提高动手能力帮助不大,极大限制了学生思维创新与创造力开发,不能有效发挥学生主观能动性[3]。为了体现专业特点,实现应用型人才培养目标,搭建培养学生创新实践能力的TCAD综合实验平台极具意义[4]。一体化TCAD综合实验平台是依托于学院集成电路设计实验室高性能服务器,让学生在教师设置的权限下,随时随地通过浏览器访问服务器,运行器件仿真软件完成实验任务,极大提高仿真效率,降低学生设备端性能需求[6]。实验平台一体化集成了微电子综合实验教学资源(课件、实验指导、教学大纲、授课计划等)、SilvacoTCAD开发文档、SilvacoTCAD使用手册、半导体器件制备工艺流程等自主学习资源,学生使用综合实验平台开发设计过程中,可以随时查阅相关资料辅助实验设计激发学生的学习兴趣,培养学生综合设计及创新性设计能力。一体化综合实验平台整体架构如图4所示。图4一体化TCAD综合实验平台架构图引入TCAD仿真教学,一方面,学生可以充分认识半导体物理学,半导体器件物理学等这些抽象难懂的理论基础知识在半导体工业中的实际应用,加强理论教学的效果。另一方面,仿真也可以部分取代了耗费成本的硅片实验,可以降低成本,缩短了开发周期和提高成品率,也就是说,仿真可以虚拟生产并指导实际生产[7]。SilvacoTCAD的工艺仿真可以实现离子注入、氧化、刻蚀、光刻等工艺过程的模拟,可以用于设计新工艺,改良旧工艺。器件仿真可以实现电学、光学及热学等特性仿真及相关参数提取,可以用于设计新型器件,旧器件改良,验证器件的电学、光学及热学等特性。一体化TCAD综合实验平台可节约成本、增强教学的直观性、提高教学效果,还可激发学生学习兴趣,理论指导实际生产过程中培养学生创新能力和分析设计能力,为地方企业培养电子电路专业技术人才。
“微电子器件”课程教学方式、方法的改革及混合式教学资源的建设,可以有效解决课程理论性强,知识点抽象,学生课堂学习中某些知识点不能很好掌握,导致前后知识点连贯不起来,疑难问题堆积,学生基础知识薄弱等多重因素影响下,教师的单方面努力很难提高课堂教学效率等问题。混合式教学资源的建设,“翻转课堂”教学模式、信息化教学环境的引入以及微电子教学展示平台的研发,可以让学生充分参与到教学中来,降低课程学习难度,吸引学生兴趣,进一步提高课堂教学效果。同时,有效解决学生学习盲目跟从被动学习的状态,培养学生分析设计能力、创新能力及项目开发能力。TCAD综合性实验平台可以模拟实际器件制备工艺流程,学生可以根据所学理论知识指导实际生产过程,半定制符合电子电路系统功能需求的器件结构,充分发挥学生的主观能动性,有效解决了现有的实验教学平台以一体化封装的验证性实验为主,极大限制了学生创新思维能力培养等问题。前期建设完成资源已实施于教学,效果良好。
[1]陈卉,曾葆青,文毅等.“微电子器件”多元化教学方法的探索[J].南京:电子电气教学学报,2016,38(03).
[2]张灿云,孔晋芳,王凤超.浅谈面向新兴光电产业的工科专业半导体器件物理课程教学改革[J].武汉:自然科学,2016(01).
[3]胡国珍、马学军、徐滤非等.面向应用型实践人才培养的电力电子技术实践创新平台研制[J].北京:实验技术与管理,2017(34、01).
[4]龙治坚,胡尚连,向珣朝.基于学生创新能力培养的“互联网+”背景下实践教学平台构建[J].北京:实验技术与管理,2017(34、08).
[5]向兵,程秀英.基于MatlabGUI的《半导体器件物理》教学仿真平台开发[J].成都:实验科学与技术,2014(12、03).
[6]常玉春,李喆,李传南.采用B/S架构的半导体TCAD网络实验教学平台构建研究[J].北京:实验技术与管理.2014(31、09).PP电子 PP电子平台PP电子 PP电子平台
地址:海南省海口市 电话:0898-08980898 手机:13988888888
Copyright © 2012-2023 PP电子·(中国)官方网站 版权所有 ICP备案编号:陕ICP备2021009313号